Dielectric Behavior of cis-Polyisoprene in Carbon Dioxide under High Pressure

نویسندگان

  • Yumi MATSUMIYA
  • Tadashi INOUE
  • Hiroshi WATANABE
  • Shinichi KIHARA
  • Masahiro OHSHIMA
چکیده

Dielectric measurement was conducted for cis-polyisoprene (PIP) in carbon dioxide (CO2) at high pressures. CO2 is dissolved in PIP more with increasing pressure, and this dissolution is expected to affect the chain dynamics. In our experimental window, the PIP chains having type-A dipoles parallel along their backbone exhibited the dielectric dispersion reflecting their global motion. This dispersion shifted to higher frequencies with increasing CO2 pressure. Time CO2 pressure superposition was found to hold well, which suggests that the global motion of the chain is accelerated by CO2 without any heterogeneity in space and along the chain backbone. The vertical shift factor (intensity shift factor) for this superposition gave the CO2 concentration in PIP. The plasticizing capability of CO2 evaluated from the horizontal shift factor (frequency shift factor) was found to be a little larger than that of tetradecane in the same range of concentration. No peculiarity was found for plasticizing ability of CO2 even in the supercritical state (at a pressure of 10 MPa).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CARBON DIOXIDE MINIMUM MISCIBILITY PRESSURE ESTIMATION (CASE STUDY)

Carbon dioxide flooding is considered to be one of the most effective enhanced oil recovery methods for the light oil reservoirs. Depending on the operating pressure, the process might be miscible or immiscible. Minimum miscibility pressure (MMP) is the most important parameter for assessing the applicability of any miscible gas flood for an oil reservoir. The miscibility condition is determine...

متن کامل

Prediction of Solubility of β-Carotene as a Component in a Multicomponent System in High-Pressure Carbon Dioxide

Solubility prediction of high molecular weight molecules in high-pressure solvents is an interesting field of research. Sometimes the solubility data are not available for several components due to lacking of valid equipments. Therefore, an accurate prediction technique can help the researchers. According to the literature, the simple Equations of State (EoSs) such as Soave-Redlich-Kwong (SRK),...

متن کامل

Experimental, Kinetics and Isotherm Modeling of Carbon Dioxide Adsorption with 13X Zeolite in a fixed bed column

In this work, zeolite 13X with porosity structure has been used as an adsorbent for adsorption of CO2 flue gas. The effect of operating conditions including pressure and time on adsorption capacity were investigated. The experiments conditions are constant temperature, the range of pressure 1 - 9 bar and the registration of adsorption capacity with passing of time. Experimental data were adjust...

متن کامل

Preparation of PMMA/MWNTs Nanocomposite Microcellular Foams by In-situ Generation of Supercritical Carbon Dioxide

Nanocomposites containing poly(methyl methacrylate) (PMMA) and surface functionalized Multi-Walled Carbon Nanotubes (MWNTs) were synthesized. The dispersion of MWNTs in PMMA was characterized using Transmission Electron Microscopy (TEM).The synthesized nanocomposites were successfully foamed using a simple method based on the in-situ generation of supercritical carbon dioxide (CO2</sub...

متن کامل

Synthesis and Characterization of Amine-modified Mesoporous SBA-15 for Carbon Dioxide Sequestration at High Pressure and Room Temperature (RESEARCH NOTE)

Amine-modified mesoporous SBA-15 adsorbent has been prepared by impregnation method using tetraethylenepentamine. The samples of this modified SBA-15 have been characterized by small angle X-ray scattering (SAXS), Scanning electron microscopy (SEM), Nitrogen adsorption-desorption isotherm and FT-IR. The adsorption capacity of CO2 on unmodified and modified samples were measured at high pressure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007